首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   353篇
  免费   30篇
  2023年   2篇
  2021年   5篇
  2020年   3篇
  2019年   11篇
  2018年   10篇
  2017年   4篇
  2016年   6篇
  2015年   17篇
  2014年   13篇
  2013年   19篇
  2012年   23篇
  2011年   22篇
  2010年   15篇
  2009年   14篇
  2008年   22篇
  2007年   22篇
  2006年   25篇
  2005年   12篇
  2004年   12篇
  2003年   11篇
  2002年   4篇
  2001年   4篇
  2000年   4篇
  1999年   10篇
  1998年   2篇
  1997年   2篇
  1996年   4篇
  1995年   5篇
  1994年   3篇
  1992年   6篇
  1991年   8篇
  1990年   4篇
  1989年   3篇
  1986年   3篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1980年   5篇
  1979年   4篇
  1978年   4篇
  1977年   6篇
  1976年   4篇
  1975年   3篇
  1973年   3篇
  1971年   3篇
  1970年   2篇
  1967年   1篇
  1966年   1篇
  1964年   2篇
  1959年   1篇
排序方式: 共有383条查询结果,搜索用时 93 毫秒
71.
Global warming is widely predicted to reduce the biomass production of top predators, or even result in species loss. Several exceptions to this expectation have been identified, however, and it is vital that we understand the underlying mechanisms if we are to improve our ability to predict future trends. Here, we used a natural warming experiment in Iceland and quantitative theoretical predictions to investigate the success of brown trout as top predators across a stream temperature gradient (4–25 °C). Brown trout are at the northern limit of their geographic distribution in this system, with ambient stream temperatures below their optimum for maximal growth, and above it in the warmest streams. A five‐month mark‐recapture study revealed that population abundance, biomass, growth rate, and production of trout all increased with stream temperature. We identified two mechanisms that contributed to these responses: (1) trout became more selective in their diet as stream temperature increased, feeding higher in the food web and increasing in trophic position; and (2) trophic transfer through the food web was more efficient in the warmer streams. We found little evidence to support a third potential mechanism: that external subsidies would play a more important role in the diet of trout with increasing stream temperature. Resource availability was also amplified through the trophic levels with warming, as predicted by metabolic theory in nutrient‐replete systems. These results highlight circumstances in which top predators can thrive in warmer environments and contribute to our knowledge of warming impacts on natural communities and ecosystem functioning.  相似文献   
72.
73.
Although the biological significance of proteoglycans (PGs) has previously been highlighted in multiple myeloma (MM), little is known about serglycin, which is a hematopoietic cell granule PG. In this study, we describe the expression and highly constitutive secretion of serglycin in several MM cell lines. Serglycin messenger RNA was detected in six MM cell lines. PGs were purified from conditioned medium of four MM cell lines, and serglycin substituted with 4-sulfated chondroitin sulfate was identified as the predominant PG. Flow cytometry and confocal microscopy showed that serglycin was also present intracellularly and on the cell surface, and attachment to the cell surface was at least in part dependent on intact glycosaminoglycan side chains. Immunohistochemical staining of bone marrow biopsies showed the presence of serglycin both in benign and malignant plasma cells. Immunoblotting in bone marrow aspirates from a limited number of patients with newly diagnosed MM revealed highly increased levels of serglycin in 30% of the cases. Serglycin isolated from myeloma plasma cells was found to influence the bone mineralization process through inhibition of the crystal growth rate of hydroxyapatite. This rate reduction was attributed to adsorption and further blocking of the active growth sites on the crystal surface. The apparent order of the crystallization reaction was found to be n=2, suggesting a surface diffusion-controlled spiral growth mechanism. Our findings suggest that serglycin release is a constitutive process, which may be of fundamental biological importance in the study of MM.  相似文献   
74.
The synthesis of four tetra-tacrine clusters where the tacrine binding units are attached to a central scaffold via linkers of variable lengths is described. The multivalent inhibition potencies for the tacrine clusters were investigated for the inhibition of acetylcholinesterase. Two of the tacrine clusters displayed a small but significant multivalent inhibition potency in which the binding affinity of each of the tacrine binding units increased up to 3.2 times when they are connected to the central scaffold.  相似文献   
75.
Understanding and predicting how global warming affects the structure and functioning of natural ecosystems is a key challenge of the 21st century. Isolated laboratory and field experiments testing global change hypotheses have been criticized for being too small‐scale and overly simplistic, whereas surveys are inferential and often confound temperature with other drivers. Research that utilizes natural thermal gradients offers a more promising approach and geothermal ecosystems in particular, which span a range of temperatures within a single biogeographic area, allow us to take the laboratory into nature rather than vice versa. By isolating temperature from other drivers, its ecological effects can be quantified without any loss of realism, and transient and equilibrial responses can be measured in the same system across scales that are not feasible using other empirical methods. Embedding manipulative experiments within geothermal gradients is an especially powerful approach, informing us to what extent small‐scale experiments can predict the future behaviour of real ecosystems. Geothermal areas also act as sentinel systems by tracking responses of ecological networks to warming and helping to maintain ecosystem functioning in a changing landscape by providing sources of organisms that are preadapted to different climatic conditions. Here, we highlight the emerging use of geothermal systems in climate change research, identify novel research avenues, and assess their roles for catalysing our understanding of ecological and evolutionary responses to global warming.  相似文献   
76.
The role of glycine betaine and choline in osmoprotection of various Rhizobium, Sinorhizobium, Mesorhizobium, Agrobacterium, and Bradyrhizobium reference strains which display a large variation in salt tolerance was investigated. When externally provided, both compounds enhanced the growth of Rhizobium tropici, Sinorhizobium meliloti, Sinorhizobium fredii, Rhizobium galegae, Agrobacterium tumefaciens, Mesorhizobium loti, and Mesorhizobium huakuii, demonstrating their utilization as osmoprotectants. However, both compounds were inefficient for the most salt-sensitive strains, such as Rhizobium leguminosarum (all biovars), Agrobacterium rhizogenes, Rhizobium etli, and Bradyrhizobium japonicum. Except for B. japonicum, all strains exhibit transport activity for glycine betaine and choline. When the medium osmolarity was raised, choline uptake activity was inhibited, whereas glycine betaine uptake was either increased in R. leguminosarum and S. meliloti or, more surprisingly, reduced in R. tropici, S. fredii, and M. loti. The transport of glycine betaine was increased by growing the cells in the presence of the substrate. With the exception of B. japonicum, all strains were able to use glycine betaine and choline as sole carbon and nitrogen sources. This catabolic function, reported for only a few soil bacteria, could increase competitiveness of rhizobial species in the rhizosphere. Choline dehydrogenase and betaine-aldehyde dehydrogenase activities were present in the cells of all strains with the exception of M. huakuii and B. japonicum. The main physiological role of glycine betaine in the family Rhizobiaceae seems to be as an energy source, while its contribution to osmoprotection is restricted to certain strains.  相似文献   
77.
Several studies have recently reported that common species are more important for species richness patterns than rare species. However, most such studies have been based on broad‐scale atlas data. We studied the contribution of different species occupancy, i.e. number of plots occupied, to species richness patterns emerging from species data in 50 by 50 m plots within six 140–200 ha forests in Norway. The study included vascular plants, lichens, bryophytes, and polypore fungi. We addressed the following questions: 1) are common species more correlated with species richness than rare species? 2) How do occupancy classes combine at various levels of species richness? 3) Which occupancy class is best in identifying the overall most species‐rich sites (hotspots) by sampling? The results showed that rare species were better correlated with species richness than common species when the information content was accounted for, that high species richness was associated with a higher proportion of less frequent species, and that the best occupancy class for local hotspot identification was species present in 10–30% of the plots within a forest. We argue that the observed correlations between overall richness and sub‐assembly richness are primarily structured by the combination of the distributions of species richness and species occupancy. Although these distributions result from general ecological processes, they may also be strongly affected by idiosyncratic elements of the individual datasets caused by the specific environmental composition of a study area. Hence, different datasets collected in different areas may lead to different results regarding the relative importance of common versus rare species, and such effects should be expected on both broad and fine spatial scales. Despite these effects, we suggest that infrequent species will tend to be more strongly correlated to species richness at local scales than at broader scales as a result of more right‐skewed species‐occupancy distributions.  相似文献   
78.
In his article, The Substance View: a critique, Rob Lovering argues that the substance view – according to which the human embryo is a person entitled to human rights – leads to such implausible implications that this view should be abandoned. In this article I respond to his criticism by arguing that either his arguments fail because the proponents of the substance view are not obligated to hold positions which may be considered absurd, or because the positions which they are assumed to be obligated to hold, are not absurd at all.  相似文献   
79.
Summary We report the first use of nutrient mist bioreactor (NMB) technology to culture animal cells. The nutrient mist approximated the amebocyte stem tissue’s natural environment, which is a thin layer of fluid in the gill leaflets of the horseshoe crabLimulus polyphemus. NMB culture was tried in an attempt to increase production of amebocytes, which are the source of theLimulus Amebocyte Lysate (LAL), the basis for a sensitive and commercially valuable endotoxin assay. Amebocyte growth in the nutrient mist bioreactor is comparable to growth in liquid medium. However, the current design of the bioreactor presents problems for primary cultures such as ours where a pyrogen-free environment is necessary and fungal decontamination is difficult.  相似文献   
80.
Immune defense is temperature dependent in cold‐blooded vertebrates (CBVs) and thus directly impacted by global warming. We examined whether immunity and within‐host infectious disease progression are altered in CBVs under realistic climate warming in a seasonal mid‐latitude setting. Going further, we also examined how large thermal effects are in relation to the effects of other environmental variation in such a setting (critical to our ability to project infectious disease dynamics from thermal relationships alone). We employed the three‐spined stickleback and three ecologically relevant parasite infections as a “wild” model. To generate a realistic climatic warming scenario we used naturalistic outdoors mesocosms with precise temperature control. We also conducted laboratory experiments to estimate thermal effects on immunity and within‐host infectious disease progression under controlled conditions. As experimental readouts we measured disease progression for the parasites and expression in 14 immune‐associated genes (providing insight into immunophenotypic responses). Our mesocosm experiment demonstrated significant perturbation due to modest warming (+2°C), altering the magnitude and phenology of disease. Our laboratory experiments demonstrated substantial thermal effects. Prevailing thermal effects were more important than lagged thermal effects and disease progression increased or decreased in severity with increasing temperature in an infection‐specific way. Combining laboratory‐determined thermal effects with our mesocosm data, we used inverse modeling to partition seasonal variation in Saprolegnia disease progression into a thermal effect and a latent immunocompetence effect (driven by nonthermal environmental variation and correlating with immune gene expression). The immunocompetence effect was large, accounting for at least as much variation in Saprolegnia disease as the thermal effect. This suggests that managers of CBV populations in variable environments may not be able to reliably project infectious disease risk from thermal data alone. Nevertheless, such projections would be improved by primarily considering prevailing thermal effects in the case of within‐host disease and by incorporating validated measures of immunocompetence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号